4 research outputs found

    Effects of Computer Simulation and Animation (CSA) on Students’ Problem Solving in Engineering Dynamics: What and How

    Get PDF
    The application of Computer Simulation and Animation (CSA) in the instruction of engineering dynamics has shown a significant growth in the recent years. The two foremost methods to evaluate the effectiveness of CSA tools, including student feedback and surveys and measuring student change in performance, suggest that CSA modules improve student learning in engineering dynamics. However, neither method fully demonstrates the quality of students’ cognitive changes. This study examined the quality of effects of application of CSA modules on student learning and problem solving in particle dynamics. It also compared CSA modules with textbook-style problem-solving regarding the changes they cause in students’ cognitive process. A qualitative methodology was adopted to design and implement a study to explore the changes in participants’ learning and problem-solving behavior caused by using a CSA module. Collected data were coded and analyzed using the categories of cognitive process based on the Revised Bloom’s Taxonomy. An analysis of the results revealed that the most significant effects were observed in understanding, analyzing, and evaluating. The high frequency of “inference” behavior after working with modules indicated a significant increase in participants’ understanding activity after working with computer modules. Comparing behavior changes of computer-simulation group students with those who worked with a textbook-style example demonstrated that the CSA modules ignited more analytical behavior among students than did textbook-style examples. This study illustrated that improvement in learning due to the application of CSA is not limited to conceptual understanding; CSA modules enhance students’ skills in applying, organizing, and evaluating as well. The interactive characteristics of CSA play a major role in stimulating students’ analytical reasoning and critical thinking in engineering dynamics

    Influence of elevated temperature on flexural behavior of a bagasse fiber-polypropylene composite assessed by moment curvature analysis method

    No full text
    In order to develop the structural applications of natural fiber-polypropylene composites, achieving enough knowledge about their mechanical behavior is necessary. One method for describing flexural characteristics of a flexural section is using the moment-curvature analysis which is an alternative for stress-strain relationship in many analyses. In this study the effect of temperature on natural axis position and flexural stress distribution in section of flexural test specimens was investigated using a moment curvature analysis method. Flexural, tensile and compressive tests were conducted in temperatures ranging from room temperature to 80 oC. A FORTRAN program was used for analysis of moment-curvature in flexural section of flexural test specimens. In order to verify the results of the program, the predicted load-deflection and maximum moment data obtained from the program were compared with the experimental load-deflection and maximum moment data and results showed that the program was able to describe the flexural behavior of the studied composite. Results showed that non-uniform flexural stress distribution led to moving up the neutral axis toward compressive side. Also with increasing temperature, the balance between compressive and tensile strain is maintained with shifting the neutral axis to compressive side, and with elevating temperature, the movement of the neutral axis decreased

    Impact of Religiosity on Delirium Severity Among Critically Ill Shi’a Muslims: A Prospective Multi-Center Observational Study

    No full text

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore